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Identifying the Relative Importance of Predictive Variables in 

Artificial Neural Networks Based on Data Produced through a 

Discrete Event Simulation of a Manufacturing Environment 

This research used a discrete event simulation to create data on a shipment 

receiving process instead of using historical records on the process. The 

simulation was used to created records with different inputs and operating 

conditions and the resulting overall elapsed time for the overall process. The 

resulting records were used to create a set of predictive artificial neural network 

(ANN) models that predicted elapsed time based on the process characteristics. 

Then the connection weight approach was used to determine the relative 

importance of the input variables. The connection weight approach was applied 

in three different steps: 1) on all input variables to identify predictive and 

nonpredictive inputs, 2) on all predictive inputs, and 3) after removal of a 

dominating predictive input. This produced a clearer picture of the relative 

importance of input variables on the outcome variable than applying the 

connection weight approach once.  

 

Keywords: discrete event simulation; artificial neural networks; connection 

weight approach; data mining. 

Introduction 

Predictive analytics methods and discrete event simulation (DES) are two important 

methods that can provide important insights and find hidden patterns in data. Predictive 

analytics and DES have different, but complementary, aims.  
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Predictive analytics is an area of study that develops methods to predict 

outcomes from information that has predictive value. Predictive analytics encompasses 

a variety of statistical techniques from data mining, predictive modelling, and machine 

learning that analyze current and historical facts to make predictions about future or 

otherwise unknown events [1].  

Predictive analytics methods have been created to find predictive relationships 

between known sets of predictor variables and known outcomes. These methods can be 

applied to dynamic processes if valid information on operating conditions and the 

corresponding results are available.  However, collecting detailed operating histories 

that contain operating conditions and outcomes can be time consuming and expensive. 

When historical process data are not available, a simulation model can be created to 

represent the process and generate data in a faster and less costly manner than recording 

an operating history. 

Another benefit of DES models is that they can be used to capture valid 

information about dynamic processes like shipping or manufacturing. Such processes 

are complex because there are many possible inputs and operating conditions that 

determine the outcome of the overall process. DES models are created to represent the 

relationships among discrete events that make up an overall system, such as a factory or 

a production line. DES models represent dynamic systems that are comprised of a 

sequence of related, interdependent events. 

DES tools can be used to generate a variety of operating scenarios, where each 

scenario includes specific input variables and other operating conditions. As each 

scenario is run through the DES model, the model determines the corresponding output 

value, such as the total time to complete the overall process. Each scenario can be 

simulated one or many times. In this way, a variety of operating conditions can be 
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simulated, and the related outcomes can be recorded. The output of the DES process is a 

set of records where each record contains the inputs’ values and the corresponding 

output value. This data can then be used in the predictive modeling process. 

In this study, we created a simulation model based on the shipment receiving 

process. We then used DES to generate data on a raw material receiving process. We 

then evaluated multiple different predictive modeling algorithms, including KNN, 

gradient boosting, artificial neural networks (ANNs), and several others to determine 

which provides the most accurate predictions of overall elapsed time. We found that 

ANNs produced the most accurate predictions. We then used the connection-weight 

approach to determine the relative importance of the input variables in relation to 

overall elapsed time.  

This study aims to confirm the following hypotheses: 

(1) The connection weight approach applied to ANNs can be used to rank 

independent variables of a DES model according to their importance. 

(2) Manipulation of the most important variables ranked by the connection weight 

approach in a DES model can lead to improvement in business performance. 

Literature Review 

DES Coupled with Data Mining 

Recent literature has expanded on different applications of DES, such as soybean 

transportation analysis [2], modeling human behavior [3], predicting crowding scores in 

an emergency department [4], and many others [5, 6]. In these complex systems, it 

becomes difficult to make predictions, analyze current states, and propose 

improvements without the use of analytical tools such as DES. 
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However, there are cases where DES alone is not enough. Sometimes it is 

beneficial to use other tools to inform simulation model inputs or extract information 

from a simulation model for analysis in other tools. Accordingly, researchers have 

developed new approaches combining DES with other tools, such as data mining 

algorithms. The current research aims to build upon the ideas created by Better, Glover 

[7] and Brady and Yellig [8]. Brady and Yellig [8] used DES to generate data that could 

be evaluated by simulation optimization algorithms to assess the importance of inputs in 

relation to the overall simulation results. Better, Glover [7] extended this work by 

suggesting that DES should generate data as an input to data mining tools, which could 

be used to determine relevant input attributes and rules that could be used to improve 

the simulation results. Some examples where data mining has been coupled with DES 

include decision trees used to support DES output analysis [9], determination of 

association rules among DES parameters [10], classification rules used to dynamically 

to optimize a DES model [7], and correlation scores used to determine relationships 

between simulation constructs in order to develop simulation optimization scenarios [8]. 

ANN Interpreted by the Connection Weight Approach 

Neural networks often perform well when compared to other machine-learning based 

predictive algorithms. The ANN algorithm has a number of advantages. The algorithm 

is able to learn from linear and non-linear relationships in the data [11, 12]. It can also 

measure and incorporate both direct effects and interaction effects among variables into 

predictive models [13]. Historically, the multilayer feed-forward perceptron (MLP) with 

backward propagation is the most widely used NN typology [14]. One reason for 

MLPs’ success is that several research groups [15, 16] have mathematically 

demonstrated that an MLP NN with a single hidden layer is a universal function 

approximator. Plus, some research has shown that neural networks can still perform 
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quite well when MLP ANNs are created with different numbers of neurons in the single 

hidden layer [17]. 

However, ANN models can be complex, and it can be difficult to determine the 

relative impact of input variables for a number of reasons. First, when ANNs are 

created, random values are used to initialize the beginning values for the weights on the 

links between neurons. Training then continues from the point. Thus, it is common for 

the relative importance of inputs to differ considerably across models [17]. Also, 

different methods of determining the relative importance give somewhat different 

results [18]. 

Researchers have developed different methods to help with this problem. Some 

methods created with this purpose in mind include Garson’s algorithm [19, 20], 

connection weight approach [21], partial derivatives [22, 23], input perturbation [24], 

sensitivity analysis [25, 26], and others [18, 21, 27]. The present research uses the 

connection weight approach for three reasons: Olden and Jackson [21] demonstrated it 

is more accurate than the Garson's algorithm [15], it usually performs as well or better 

than other approaches [17, 18], and because it is derived directly from the weights of the 

links in the neural network. 

 In the connection weight approach, the relative contributions of the input 

variables on the output of the ANN model is based on the weights on the links from 

input neurons to hidden neurons and from hidden neurons to the output neurons. The 

steps created by Olden and Jackson [21] are as follows: 

(1) Create multiple ANNs using the original data with different initial random 

weights. Select the neural network with the best predictive performance as 

measured by R2 and RMSE. For example, create 20 ANN models and select the 

most predictive one. 
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(2) Record the connection weights from the links between the neurons: 

(a) for links from input nodes to hidden neurons.  

(b) for links from hidden neurons to the output node. 

(3) Calculate the product of the input-to-hidden-neuron weight and the hidden 

neuron-output weight for each input-to-output connection. Calculate the 

importance score for each input, which is the sum of all contributions to the 

output node made by a given input through all hidden nodes. Figure 1 shows an 

example of these calculations. 

(4) Go back to step one and repeat the process until enough ANNs have been 

evaluated to allow for a reasonable distribution of importance scores. Following 

the example of Olden, Joy [18] and De Oña and Garrido [17], we found that 

calculating the relative weight of the inputs on 50 "best" models (chosen in step 

1) was sufficient to get an adequate distribution of results. 

(5) Summarize the relative importance score for the input variables across the 

multiple models. 
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Figure 1. Connection weight calculation 

 

Methodology 

In order to test the hypotheses of this research, we performed an experiment that 
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included the following five steps: 1) create and validate a simulation model; 2) using the 

data from the simulation model, create predictive models using several types of 

predictive algorithms to determine which type of algorithm produces the best 

predictions (we found that ANNs performed the best out of all the algorithms we 

tested); 3) create 50 high-performing ANN models; 4) calculate the relative importance 

of each input variable for each model using the connection weight approach; and 5) 

summarize the results.  

Case Study Description 

This study was based on a real problem faced by a manufacturer located in Brazil. The 

company wanted to be more efficient in their raw materials receiving process. Currently 

they face fluctuations in the arrival of trucks delivering raw materials, which causes 

either long lines of trucks waiting to unload or a shortage of raw materials. They want to 

be able to better predict the total time a truck stays in the system and identify the main 

factors that impact the total time. 

The company’s raw material receiving process description is as follows. First, 

the truck arrives at the entrance location where paperwork is done. Then the truck waits 

for its turn to have its sample collected at the mill hopper location. After it is collected, 

the sample goes to the laboratory where it will be analyzed, and the truck awaits the 

analysis results. When the analyses are finished, if the raw material is accepted, the 

truck will wait for its turn to unload its material at the mill hopper location. After 

unloading, the truck is free to go. If the material is rejected, the truck is not allowed to 

unload.  

All variables used to build ANNs are listed below: 
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• IsGroupA, IsGroupB, and IsGroupC: Dummy variables representing different 

groups of material that arrive in the manufacturing. 

• IncludesWeekend: A binary variable that indicates whether or not the truck had 

to wait to unload during the weekend.  

• IncludesNight: A binary variable that indicates whether or not the truck stayed 

overnight in order to be unloaded. 

• Shortage: A binary variable with a value of one when a shortage caused the 

manufacturing process to stop during the time the truck was in line. 

• UnloadQuantity: This variable represents the weight, in thousand pounds, of the 

material in the truck.  

• WaitedToUnload: A binary variable that indicates whether or not the quantity 

loaded in the truck exceeds the silo’s free capacity at the time the truck arrives. 

• WasPriority: Binary variable that indicates whether there is currently a shortage 

of a material being carried by the truck. If so, the truck gets priority in the queue.  

• TimeEntrance: Time to complete the paper work at the entrance.  

• TimeAnalysis: Time taken by the lab to analyze a sample of the material in the 

truck. 

• TimeCollection: Time taken at the mill hopper to collect a sample of the truck 

material. 

• TimeUnload: Time taken at the mill hopper to unload a truck. 

• TrucksInLine: This variable represents the number of trucks waiting to unload 

their material at the moment a specific truck arrives. 

• TotalTime: This is the response variable. It measures the total time the truck 

stayed in the system. 
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Experiment 

First, a simulation model of the system studied was created using ProModel® software. 

The model was then verified and validated to ensure that it was a correct representation 

of the real system. Then, the simulation was conducted to calculate total elapsed time 

based on different inputs and process conditions. 4934 records were created by the 

simulation. Next, the data generated by the simulation was used to create the ANNs.  

We varied the number of hidden neurons in a single hidden layer from three to twelve. 

We tested a combination of TanH and linear transfer functions and found that using all 

TanH transfer functions performed the best. For each number of neurons, we created 

twenty ANN models and had the data mining software pick the most predictive one. We 

also tried a number of configurations with two hidden layers. We found that using a 

single layer with twelve neurons produced the best predictive results.  

Fifty high-performing ANN models were created so that we could summarize the 

results to account for the variability injected into the ANN creation process. The 

software uses the back-propagation algorithm with one hidden layer. 

When the overall input contributions or importance scores were calculated, it was 

observed that some values were positive while others were negative. 

In order to make comparison between variables possible, absolute values for the 

importance scores were calculated in this research. It is important to note that the results 

shown in this research will not indicate whether a variable will increase or decrease the 

output value, but rather, how important the variable is to the dependent variable that 

will be predicted. 

In the connection weight approach, after the importance scores are calculated, 

they are given an ordinal number as their rank. Through this research, it was possible to 
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observe that some variables have importance scores that are very similar, thus making 

them difficult to differentiate. Consequently, when ranks are ordinal they determine 

whether one variable is more meaningful than the other, but they do not specify by how 

much. The present research used a normalized rank instead of an ordinal rank. This was 

done by normalizing the importance scores and using this normalized number as their 

rank, as shown in Figure 1. This made it possible to not only define an ordinal rank of 

input variables, but also to determine how much they differ in proportion to the input 

variable that has the highest relative importance.   

Results 

The dataset used in this research consisted of 4934 records. We used a 60:40 ratio for 

training and test partitions. The results shown are based on an average of fifty ANN 

models. 

ANN Compared to Other Algorithms 

Before ANN was picked as the algorithm used in this research, it was compared to other 

data mining algorithms in order to see which had the best prediction capabilities based 

on the R2 and RMSE results. This comparison is shown in Table 1. For the current 

dataset produced by the simulation model, the ANN algorithm had the best prediction 

performance, having the highest R2 and lowest RMSE in the test dataset. 
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 Training Dataset Test Dataset 
 MAPE RMSE R2 MAPE RMSE R2 

Linear Regression 84.5 1174 0.700 88.0 1158 0.640 
Random Forest 37.6 871 0.835 43.6 974 0.745 

KNN (Equal weights) 36.8 960 0.799 40 1011 0.725 
Gradient Boosting 42.6 892 0.827 48.1 1010 0.726 
Regression Trees 29.2 805 0.859 39.3 1113 0.667 
Artificial Neural 

Network 35.6 869 0.835 40.1 930 0.770 

Table 1. Data Mining Algorithms Prediction Results 
 

Connection Weight Approach 

To determine how well the connection weight approach could differentiate input 

variables that did or did not contain useful predictive information, we conducted a 

preliminary analysis to determine if each input variable contained predictive 

information. To determine this, we created models that included all input variables. 

Then we removed one input variable at a time to see if the predictive power of the 

models diminished, as reflected by lowered R-square values and higher RMSE values. 

Out of the 14 input variables, the following five could be removed without reducing 

predictive quality: TimeAnalysis, TimeCollection, UnloadQuantity, TimeEntrance, and 

TimeUnload. 

We then did a sequence of three rounds of tests using different combinations of input 

variables. In each round, we created 50 high-performing ANN models. To find each 

high-performing model, we created 20 ANN models and selected the most predictive 

one as measured by R-squared and RMSE. Thus, for each round, we created 1000 ANN 

models and selected the 50 most predictive ANNs. We then used the connection weight 

approach to determine the relative importance of the input variables.  
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Round 1: Relative Importance when All Input Variables are Included 

In the first round of testing, we included all 14 input variables, including nine that 

contained predictive information and five that did not. Table 2 and Figure 2 show the 

results of the first round of testing. Table 2 shows the relative importance of all input 

variables.  

 
Mean   Correlation 

 
Normalized Contains (r) with 

 
Relative Predictive Outcome 

Input Variable Importance Information Variable 
TrucksInLine 1.00 Yes 0.313 
IsGroupA 0.49 Yes -0.108 
IsGroupB 0.46 Yes -0.253 
IncludesNight 0.44 Yes 0.520 
WaitedToUnload 0.43 Yes 0.607 
Shortage 0.25 Yes 0.377 
IncludesWeekend 0.23 Yes 0.372 
TimeAnalysis 0.21 No 0.062 
WasPriority 0.20 Yes -0.240 
IsGroupC 0.18 Yes 0.374 
TimeCollection 0.15 No -0.030 
UnloadQuantity 0.14 No -0.130 
TimeEntrance 0.04 No -0.006 
TimeUnload 0.02 No -0.076 

 

Table 2. Relative Importance, Predictive Variables, and Correlation with Outcome 

 

The four input variables with the lowest relative importance also lacked predictive 

information. The five input variables with the lowest Pearson correlations, r, with the 

outcome variable, were also the five that lacked predictive information. Thus, the 

combination of a low relative importance score and the lowest correlation coefficient 

corresponded to all five non-predictive input variables. Figure 2 contains a bar chart that 

reflects the average normalized relative importance score for each input variable and a 
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Tukey's boxplot to reflect the distributions of the normalized relative importance score 

for each input variable. The thick lines in the box represent the median, and the thin red 

lines represent the average.  

 

 

 

Figure 2. Average Importance Scores Including All Variables and Box Plot of Scores 

 

The variable TrucksInLine had the highest importance score in all models. Thus, 

its score is represented by one, which is the highest normalized score possible. The next 

most important variables are IsGroupA, IsGroupB, IncludesNight, and 

WaitedToUnload. However, they have very similar average scores, making it hard to 

define which variables are actually the most meaningful to the model. 

Round 2: Relative Importance when Only Predictive Variables are Included 

Because nonpredictive input variables can cause noise that may confuse the relative 

importance scores, in the second round, we included only the nine variables that contain 

predictive information to determine what effect excluding nonpredictive variables 

would have on the relative importance scores of the remaining input variables. The 
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results are shown in Figure 3.  

 

Figure 3. Average Importance Scores Including Meaningful Variables and Box Plot of 
Scores 
 

As shown in Figure 3, the variable TrucksInLine is still the most important 

variable in predicting the outcome of the system, followed by IncludesNight, IsGroupB, 

WaitedToUnload, and IsGroupA. The new scores follow a different order compared to 

the previous rank. Thus, the removal of variables that did not contribute predictive 

information to the model clarified the relative importance of the remaining variables. 

Variables IncludesNight, IsGroupB, WaitedToUnload, and IsGroupA still have 

similar scores in the second test. However, the model is more sensitive to existing 

differences, as evidenced by the fact that the differences in the relative scores are higher 

than in the previous test. 

Table 3 provides a comparison between relative importance scores for the first 

and second rounds. The average importance scores for the variables TrucksInLine, 

IsGroupB, IsGroupC, and WaitedToUnload are very similar. There are some differences 

in other variables’ scores, the highest being IncludesWeekend with a score of 0.16.  
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Round 1: All Input Round 2: Just   

 
Variables Predictive Variables Difference 

 
Relative   Relative   Relative 

 
Importance Raw  Importance Raw Importance 

Input Variable Mean (S.D) Rank Mean (S.D) Rank Mean (S.D) 
TrucksInLine 1.00 (0.00) 1 0.99 (0.05) 1 0.01 (0.05) 
IsGroupA 0.49 (0.18) 2 0.37 (0.21) 5 0.12 (0.03) 
IsGroupB 0.46 (0.15) 3 0.47 (0.24) 3 0.02 (0.09) 
IncludesNight 0.44 (0.16) 4 0.53 (0.22) 2 0.09 (0.06) 
WaitedToUnload 0.43 (0.11) 5 0.40 (0.15) 4 0.02 (0.04) 
Shortage 0.25 (0.07) 6 0.11 (0.09) 7 0.14 (0.02) 
IncludesWeekend 0.23 (0.06) 7 0.07 (0.07) 9 0.16 (0.01) 
WasPriority 0.20 (0.09) 8 0.09 (0.12) 8 0.11 (0.03) 
IsGroupC 0.18 (0.12) 9 0.20 (0.15) 6 0.02 (0.03) 

Table 3. Difference in Relative Importance in Rounds 1 and 2 
 

Round 3: Relative Importance when the Most Dominant Variable is Excluded 

In the previous two rounds, the variable TrucksInLine was by far the input variable with 

the highest relative importance. In this round, we removed the TrucksInLine variable to 

get a clearer picture of the relative value of the remaining input variables. 

The first and second tests did not offer many insights on how to rank the 

variables with very similar scores. In order to better understand how to make a 

distinction between the variables IncludesNight, IsGroupB, WaitedToUnload, and 

IsGroupA, a third test was performed. In this test we excluded the variable 

TrucksInLine from the ANNs. As TrucksInLine was the most influential input variable, 

it may have dominated the models such that other variables could not differentiate 

themselves from others with similar scores. The results from the third test are shown in 

Figure 4. 
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Figure 4. Average Importance Scores Excluding TrucksInLine from Second Test and 
Box Plot of Scores 

 

With the removal of the dominant predictor, the next best predictor 

IncludesNight, followed by WaitedToUnload, shows more differentiation from the 

variables with similar relative importance scores in Round 2. The remaining variables, 

however, have very similar scores, making it difficult to accurately make a distinction 

between them. 

From the results of these three tests, it was possible to observe that the 

connection weight approach tends to predict the best variable very accurately. When the 

best variable is taken out of the models, it is possible to see another variable that stands 

out. 

When many variables are included in the model, it is hard to determine an 

accurate ranking. Through the tests, it is possible to see that the first ranking created 

was not accurate, as variable IncludesNight was ranked as number four, while in the 

following tests it was ranked as the second most important variable. This indicates that 

an iterative process to rank variables might be beneficial, as it will allow variables to 

emerge unhindered by the score of the most important variable.  
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Test on Outcome Variable 

To test whether input variables with a high relative impact had a stronger impact on the 

output variable, Total Time, we analyzed each variable. For each input variable, we split 

records in the data into two groups. One group was made up of records with higher than 

average values for the input variable. The other group had lower than average values for 

this variable. Then, we compared these two groups based on Total Time. For example, 

TrucksInLine had the highest relative impact in the study. Based on this result, we 

created two additional groups. One contained trucks that arrived with a below average 

number of trucks in line. The other group contained trucks that arrived with an above 

average number of trucks in line. We followed this process for the other input variables. 

Figure 5 shows this comparison for the four input variables with the highest 

relative impact. In each of these comparisons, there was a large difference in Total Time 

between the records in the two groups for each variable.  
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Figure 5. Total Time comparisons for input variables with high relative importance 

 

Figure 6 shows the results of this process for four variables with low relative 

importance scores. For each of these input variables, the group with low values and the 

group with high values had similar values for Total Time.  
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Figure 6. Total Time comparisons for input variables with low relative importance 

 

Discussion 

 

In this research we extended earlier work by combining the results of DES with 

predictive modeling using ANN. Specifically we used a DES model to generate records 

that were used by ANN predictive models. These models were then evaluated to 

determine the relative advantages of inputs by the connection weight approach. This 

allowed us to calculate and understand the relative importance of these variable without 

having to take the time to capture a detailed history of the overall raw materials 

receiving process at the company under study.  This informed the input variables that 

should be focused on to improve the efficiency of the process.  

Despite the high complexity of ANNs, it is possible to interpret them in terms of 

relative importance. And helpful insights can be extracted from this process, such as a 

better understanding of the relationships that exist between variables. 

It is not enough to understand the relative importance of one ANN model because the 

random weights used to initiate the weights in ANN models can and do produce so 
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many different predictive models. Because different models produce somewhat 

different relative importance scores for input variables, it is necessary to produce a non-

trivial number of models and to examine the distribution of relative importance. Some 

ANN models are more predictive than others, so by producing a set of models and 

selecting the most predictive ones, the most predictive models can be studied.  

In addition, we found that different numbers of nodes in the hidden layer produced very 

similar predictive capabilities. Although there was a best number of nodes (12 in this 

research), we observed that some models with fewer hidden neurons performed almost 

as well. Future research could investigate the effect of changing the number of hidden 

neurons on relative importance calculation results.   

Figure 7 is an example of why it is conceptually complex to relate input 

variables to output variables in ANN models and why relative importance is helpful. 

First, the influence from each input is typically distributed through multiple neurons in 

the hidden layer. Second, it is difficult or impossible to create a meaningful conceptual 

abstraction for each hidden neuron. An input node transfers some of its influence via 

positive links and some of its influence by negative links. Likewise, the same neuron 

often transfers positive influence from some inputs and negative weights from other 

input variables. Third, weights on both the inputs-to-hidden links and on the hidden-

output links may be either positive or negative, so resulting product values are 

sometimes positive and sometimes negative. Finally, when they are summed positive 

influences and negative influences are summed so that relative importance reflects the 

net effect of adding multiple positive and multiple negative values.  
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Figure 7. Example of how Connection Weight Products Sum to Relative Importance for 

one Neural Network 

 

The fact that both negative and positive relative importance scores can result 

from the connection weight approach is not a new finding. It was found by Holden et al. 

(2002) who created the method. However, in that study only four hidden neurons were 

used. In this research,12 hidden neurons were used, which increases the distribution of 

influence from the input variables across eight more neurons. The difficulty of 

conceptualizing so many positive and negative influences and netting them out makes 

the net effects represented by the relative importance values that much more important 

from a meaning standpoint.  

Our research produced insights about ways the connection weight approach can 

be used in an iterative fashion to better understand the contribution of input variables. 
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Past research studies have applied this approach to input variables that were already 

known to contain predictive information. Our finding that the connection weight 

approach can be used to identify and eliminate potential input variables that contain 

little or no predictive information can be applied to future problems. In the problem 

studied in this paper, input variables with the lowest relative impact also were found to 

contain no predictive information.  

Our finding that a dominating variable masked the potential relative contribution 

of other input variables can also be applied to future problems. In this research we 

found that by removing a dominating input variable that the relative contribution of the 

remaining input variables became clearer. 

 

Conclusion 

This paper presents an approach to studying a process that mitigates lack of historical 

data on the process by using simulation to create useful data. By creating a DES model 

that reflected the process, a distribution of inputs and other operating conditions were 

simulated to determine the output that would result for process. The resulting records 

we input into the predictive modeling process, where ANNs was found to be the most 

predictive method. We then successfully applied the connection weight approach to a 

set of high-performing ANN models determine the relative importance of input 

variables on the process outcome. We also found that applying the connection weight 

method sequentially can help eliminate non-predictive variables and that by removing a 

dominant input variable that the relative contributions of the remaining input variables 

can be characterized more clearly.   
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